Home » Blog » Find all z such that the series (2z+3)n / (n log (n+1)) converges

Find all z such that the series (2z+3)n / (n log (n+1)) converges

Find all complex numbers z such that the series

    \[ \sum_{n=1}^{\infty} \frac{(2z+3)^n}{n \log (n+1)} \]

converges.


First, we consider

    \begin{align*}  \lim_{n \to \infty} \frac{a_{n+1}}{a_n} &= \lim_{n \to \infty} \left( \frac{(2z+3)^{n+1}}{(n+1) \log (n+2)} \right) \left( \frac{n \log (n+1)}{(2z+3)^n} \right) \\[9pt]  &= \lim_{n \to \infty} \frac{(2z+3)n \log (n+1)}{n \log(n+2) + \log(n+2)}. \end{align*}

So, by the ratio test, the series converges if |2z+3|< 1 and diverges if |2z+3|>1. If |2z+3| = 1 with Z \neq -1 then the series also converges by Dirichlet’s test. Hence, the series converges for |2z+3| \leq 1 with z \neq -1.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):