Home » Blog » Find all x such that the series (-1)n (2n sin2nx) / n converges

Find all x such that the series (-1)n (2n sin2nx) / n converges

Find all real numbers x such that the series

    \[ \sum_{n=1}^{\infty} (-1)^n \frac{2^n \sin^{2n} x }{n}\]

converges.


We have

    \[ \sum_{n=1}^{\infty} (-1)^n \frac{2^n \sin^{2n} x}{n} = \sum_{n=1}^{\infty} \frac{1}{n}(-2 \sin^2 x)^n. \]

This series converges if and only if 2 \sin^2 x \leq 1.

    \begin{align*}  2 \sin^2 x \leq 1 && \implies && \sin^2 x &\leq \frac{1}{2} \\[9pt]  && \implies && \sin x &\leq \frac{\sqrt{2}}{2} \\[9pt]  && \implies && |x-k\pi| &\leq \frac{\pi}{4} \end{align*}

for k \in \mathbb{Z}.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):