Home » Blog » Determine the convergence of the series (-1)n(n-1)/2 (n100 / 2n)

Determine the convergence of the series (-1)n(n-1)/2 (n100 / 2n)

Consider the series

    \[ \sum_{n=1}^{\infty} (-1)^{\frac{n(n-1)}{2}} \left( \frac{n^{100}}{2^n} \right). \]

Determine whether the series converges or diverges. If it converges, determine whether it converges conditionally or absolutely.


The series converges absolutely.

Proof. First, we have

    \[ \sum_{n=1}^{\infty} \left| (-1)^{\frac{n(n-1)}{2}} \left( \frac{n^{100}}{2^n} \right) \right| = \sum_{n=1}^{\infty} \left( \frac{n^{100}}{2^n} \right). \]

Then using the ratio test we have

    \begin{align*}  \lim_{n \to \infty} \frac{a_{n+1}}{a_n} &= \lim_{n \to \infty} \left( \frac{(n+1)^{100}}{2^{n+1}} \right) \left( \frac{2^n}{n^{100}} \right) \\[9pt]  &= \lim_{n \to \infty} \left( \frac{(n+1)^{100}}{2n^{100}} \\[9pt]  &= \frac{1}{2} < 1. \end{align*}

Hence, the series converges absolutely. \qquad \blacksquare

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):