Home » Blog » Determine the convergence of the series sin (nπ + 1/log n)

Determine the convergence of the series sin (nπ + 1/log n)

Consider the series

    \[ \sum_{n=2}^{\infty} \sin \left( n \pi + \frac{1}{\log n} \right). \]

Determine whether the series converges or diverges. If it converges, determine whether it converges conditionally or absolutely.


The series is conditionally convergent.

Proof. First, we recall the formula for the sine of a sum,

    \[ \sin (x+y) = \sin x \cos y + \sin y \cos x. \]

Therefore, we have

    \begin{align*}  \sum_{n=2}^{\infty} \sin \left( n \pi + \frac{1}{\log n} \right) &= \sum_{n=2}^{\infty} \left( \sin (n \pi) \cos \left( \frac{1}{\log n} \right) + \sin \left( \frac{1}{\log n} \right) \cos (n \pi) \right) \\[9pt]  &= \sum_{n=2}^{\infty} (-1)^n \sin \left( \frac{1}{\log n} \right).  \end{align*}

(Here we use that \sin (n \pi) = 0 for all n and \cos (n \pi) = (-1)^n for all n.) This series is convergent since

    \[ \lim_{n \to \infty} \sin \left( \frac{1}{\log n} \right) = 0 \]

and it is monotonically decreasing for n \geq 2.

This convergence is conditional since

    \[ \sum_{n=2}^{\infty} \left| (-1)^n \sin \left( \frac{1}{\log n} \right) \right| = \sum_{n=2}^{\infty} \sin \left( \frac{1}{\log n} \right). \]

But then, since \frac{1}{n} < \frac{1}{\log n} and \sin x is decreasing for x < \frac{\pi}{2} we have

    \[ \sin \frac{1}{n} < \sin \frac{1}{\log n} \]

for all n \geq 2. We know \sum \sin \frac{1}{n} diverges since it is asymptotically equivalent to \frac{1}{n} (i.e., \lim_{n \to \infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}} = 1). Therefore, by the comparison test

    \[ \sum_{n=2}^{\infty} \sin \frac{1}{\log n} \]

diverges. Therefore, the convergence of the series in question is conditional. \qquad \blacksquare

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):