Home » Blog » Determine the convergence of the series (-1)n / log(1 + 1/n)

Determine the convergence of the series (-1)n / log(1 + 1/n)

Consider the series

    \[ \sum_{n=1}^{\infty} \frac{(-1)^n}{\log \left( 1 + \frac{1}{n}\right)}. \]

Determine whether the series converges or diverges. If it converges, determine whether it converges conditionally or absolutely.


The given series diverges.

Proof. The series diverges since the limit

    \[ \lim_{n \to \infty} \frac{(-1)^n}{n^{\frac{1}{n}}} \neq 0. \qquad \blacksquare\]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):