Home » Blog » Determine the convergence of the series (-1)n-1 / ns

Determine the convergence of the series (-1)n-1 / ns

Consider the series

    \[ \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s}. \]

Determine whether the series converges or diverges. If it converges, determine whether it converges conditionally or absolutely.


If s \leq 0 then the series diverges since a_n \neq 0 as n \to \infty.

If s > 0 then the series converges by the Leibniz rule since \frac{1}{n^s} is decreasing and \lim_{n \to \infty} \frac{1}{n^s} = 0.

The convergence is absolute if and only if s >1 since

    \[ \sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n^s} \right| = \sum_{n=1}^{\infty} \frac{1}{n^s} \]

converges if and only if s > 1 (by the integral test, Example #1 on page 398 of Apostol).

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):