Home » Blog » Determine the convergence of the given alternating series

Determine the convergence of the given alternating series

Consider the series

    \[ \sum_{n=1}^{\infty} (-1)^n \int_n^{n+1} \frac{e^{-x}}{x} \, dx. \]

Determine whether the series converges or diverges. If it converges, determine whether it converges conditionally or absolutely.


The given series converges absolutely.

Proof. The series is absolutely convergent since

    \begin{align*}  \sum_{n=1}^{\infty} \left| (-1)^n \int_n^{n+1} \frac{e^{-x}}{x} \, dx \right| \\[9pt]  &= \sum_{n=1}^{\infty} \int_n^{n+1} \frac{e^{-x}}{x} \, dx \\[9pt]  &\leq \sum_{n=1}^{\infty} \int_n^{n+1} e^{-x} \, dx \\[9pt]  &= \sum_{n=1}^{\infty} \left( e^{-n} - e^{-n+1}\right) \\[9pt]  &= \frac{1}{e} - \lim_{n \to \infty} e^{-n} &(\text{telescoping series})\\[9pt]  &= \frac{1}{e}. \qquad \blacksquare \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):