Home » Blog » Determine if the series rn |sin (nx)| converges or diverges

Determine if the series rn |sin (nx)| converges or diverges

Determine if the following series converges or diverges and justify your decision.

    \[ \sum_{n=1}^{\infty} r^n |\sin (nx)|, \qquad r> 0. \]


First, if 0 < r < 1 the series converges by the comparison test since

    \[ r^n | \sin (nx)| \leq r^n \]

which implies

    \[ \sum_{n=1}^{\infty} r^n |\sin(nx)| \leq \sum_{n=1}^{\infty} r^n \]

which we know converges for 0 < r < 1. If r \geq 1 then in order for the series to converge we must have |\sin (nx)| = 0 (otherwise \lim_{n \to \infty} a_n \neq 0 so the series cannot converge). Thus, the series also converges when x = k \pi for k \in \mathbb{Z}.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):