Home » Blog » Test the given series for convergence or divergence

Test the given series for convergence or divergence

Determine if the following series converges or diverges and justify your decision.

    \[ \sum_{n=1}^{\infty} e^{-n^2}. \]


The series converges by the root test since

    \begin{align*}  \lim_{n \to \infty} a_n^{\frac{1}{n}} &= \lim_{n \to \infty} \left( e^{-n^2} \right)^{\frac{1}{n}} \\[9pt]  &= \lim_{n \to \infty} e^{-n} \\[9pt]  &= 0 < 1. \end{align*}

Hence, the series converges.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):