Home » Blog » Test the given series for convergence or divergence

Test the given series for convergence or divergence

Determine if the following series converges or diverges and justify your decision.

    \[ \sum_{n=1}^{\infty} \frac{n!}{2^{2n}}. \]


The series diverges by the ratio test since

    \begin{align*}  \lim_{n \to \infty} \frac{a_{n+1}}{a_n} &= \lim_{n \to \infty} \left( \frac{(n+1)!}{2^{2n+2}} \right) \left( \frac{2^{2n}}{n!} \right) \\[9pt]  &= \lim_{n \to \infty} \frac{n+1}{4} \\[9pt]  &= + \infty > 1. \end{align*}

Hence, the series diverges.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):