Home » Blog » Test the given series for convergence or divergence

Test the given series for convergence or divergence

Determine if the following series converges or diverges and justify your decision.

    \[ \sum_{n=1}^{\infty} \frac{3^n n!}{n^n}. \]


This series diverges by the ratio test since

    \begin{align*}  \lim_{n \to \infty} \frac{a_{n+1}}{a_n} &= \lim_{n \to \infty} \left( \frac{3^{n+1}(n+1)!}{(n+1)^{n+1}} \right) \left( \frac{n^n}{3^n n!} \right) \\[9pt]  &= 3 \lim_{n \to \infty} \left( \frac{n}{n+1}\right)^n \\[9pt]  &= 3 \lim_{n \to \infty} \left( \frac{1}{1+\frac{1}{n}} \right)^n \\[9pt]  &= \frac{3}{e} > 1. \end{align*}

Hence, the series diverges.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):