Home » Blog » Conclude if the given series converges or diverges and justify the conclusion

Conclude if the given series converges or diverges and justify the conclusion

Test the following series for convergence or divergence. Justify the decision.

    \[ \sum_{n=1}^{\infty}  \frac{1 + \sqrt{n}}{(n+1)^3 - 1}. \]


The series converges. We apply the limit ratio test, letting

    \[ a_n = \frac{1+\sqrt{n}}{(n+1)^3-1}, \qquad b_n = \frac{1}{n^{\frac{5}{2}}}. \]

Then, we know \sum b_n converges and we have

    \begin{align*}  \lim_{n \to \infty} \frac{a_n}{b_n} &= \lim_{n \to \infty} \frac{\frac{1+\sqrt{n}}{(n+1)^3-1}}{\frac{1}{n^{\frac{5}{2}}}} \\[9pt]  &= \lim_{n \to \infty} \frac{n^{\frac{5}{2}} + n^3}{n^3 + 3n^2 + 3n} \\[9pt]  &= \lim_{n \to \infty} \frac{1 + \frac{1}{\sqrt{n}}}{1 + \frac{3}{n} + \frac{3}{n^2}} \\[9pt]  &= 1. \end{align*}

Hence, the convergence of \sum b_n implies the convergence of

    \[ \sum_{n=1}^{\infty} \frac{1+\sqrt{n}}{(n+1)^3 - 1}. \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):