Home » Blog » Conclude if the given series converges or diverges and justify the conclusion

Conclude if the given series converges or diverges and justify the conclusion

Test the following series for convergence or divergence. Justify the decision.

    \[ \sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}. \]


The series diverges. We apply the limit ratio test with

    \[ a_n = \frac{1}{\sqrt{n(n+1)}}, \qquad b_n = \frac{1}{n}. \]

Then taking the limit of the ratio we have

    \begin{align*}  \lim_{n \to \infty} \frac{a_n}{b_n} &= \lim_{n \to \infty} \frac{\frac{1}{\sqrt{n^2+n}}}{\frac{1}{n}} \\[9pt]  &= \lim_{n \to \infty} \frac{n}{\sqrt{n^2+n}} \\[9pt]  &= \lim_{n \to \infty} \frac{1}{\sqrt{1+\frac{1}{n}}} \\[9pt]  &= 1. \end{align*}

Thus, both \sum a_n and \sum b_n converge or both diverge. But, we know \sum b_n = \sum \frac{1}{n} diverges. Hence, \sum a_n diverges as well.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):