Home » Blog » Without justification, establish the given formula

Without justification, establish the given formula

Obtain the following formula without attempting to justify the steps used in the process.

    \[ \sum_{n=1}^{\infty} \frac{x^n}{n} = \log \left( \frac{1}{1-x} \right). \]


Starting with the formula for the geometric series,

    \[ \sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \qquad \text{for } |x| < 1, \]

We integrate both sides, (and assuming without justification that we can integrate the series term-by-term)

    \begin{align*}  && \sum_{n=0}^{\infty} x^n &= \frac{1}{1-x} \\[9pt]  \implies && \int \sum_{n=0}^{\infty} x^n &= \int \frac{1}{1-x} \, dx \\[9pt]  \implies && \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} &= \log \frac{1}{1-x} \, dx \\[9pt]  \implies && \sum_{n=1}^{\infty} \frac{x^n}{n} &= \log \frac{1}{1-x}. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):