Home » Blog » Prove that the given infinite sum has the the given value

Prove that the given infinite sum has the the given value

Prove that the following sum converges and has the given value.

    \[ \sum_{n=1}^{\infty} \frac{2^n + n^2 + n}{2^{n+1} n(n+1)} = 1. \]


First, we simplify,

    \begin{align*}  \sum_{n=1}^{\infty} \frac{2^n + n^2 + n}{2^{n+1} n (n+1)} &= \sum_{n=1}^{\infty} \left( \frac{1}{2n(n+1)} + \frac{1}{2^{n+1}} \right) \\[9pt]  &= \frac{1}{2} \sum_{n=1}^{\infty} \left( \frac{1}{n} - \frac{1}{n+1} + \frac{1}{2^n} \right) \\  &= \frac{1}{2} \sum_{n=1}^{\infty} \left( \frac{1}{n} - \frac{1}{n+1} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2^n}. \end{align*}

Splitting the sum is justified since the two sums both converge since the first one is a telescoping series and the second is a geometric series. Then we have

    \begin{align*}  &= \frac{1}{2} (b_1 - L) + \frac{1}{4} \left( \frac{1}{1 - \frac{1}{2}} \right) \\[9pt]  &= \frac{1}{2} (1) + \frac{1}{4} \cdot 2 \\[9pt]   &= 1. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):