Home » Blog » Prove by induction a formula for infinite sums of a given form

Prove by induction a formula for infinite sums of a given form

Three of the previous exercise (here, here, and here, Section 10.9, Exercises #17 – #19) suggest a formula

    \[ \sum_{n=0}^{\infty} \binom{n+k}{k} x^n = \frac{1}{(1-x)^{k+1}}, \qquad \text{where} \ \ \binom{n+k}{k} = \frac{(n+1)(n+2) \cdots (n+k)}{k!}. \]

Use mathematical induction to prove this formula without justifying the formal manipulations with the series.


Proof. For the case k =1 we already established in the previous exercises

    \[ \sum_{n=0}^{\infty} (n+1)x^n = \frac{1}{1-x^2} \quad \implies \quad \sum_{n=0}^{\infty} \binom{n+k}{n} x^n = \frac{1}{(1-x)^{k+1}}. \]

Thus, the statement holds for the case k =1. Assume then that it holds for some k = j \in \mathbb{Z}_{>0}. Then, we have

    \[ \sum_{n=0}^{\infty} \binom{n+j}{j} x^n = \frac{1}{(1-x)^{j+1}}. \]

Differentiating both sides we then have

    \begin{align*}  && \sum_{n=0}^{\infty} \binom{n+j}{j} nx^{n-1} &= \frac{j+1}{(1-x)^{j+2}} \\[9pt]  \implies && \sum_{n=0}^{\infty} \frac{n(n+1) \cdots (n+j)}{(j+1)!} x^{n-1} &= \frac{1}{(1-x)^{j+2}} \\[9pt]  \implies && \sum_{n=1}^{\infty} \frac{n(n+1) \cdots (n+j)}{(j+1)!} x^{n-1} &= \frac{1}{(1-x)^{j+2}} \\[9pt]  \implies && \sum_{n=0}^{\infty} \frac{(n+1)(n+2) \cdots (n+j+1)}{(j+1)!} x^n &= \frac{1}{(1-x)^{j+2}} \\[9pt]  \implies && \sum_{n=0}^{\infty} \binom{n+j+1}{j+1} x^n &= \frac{1}{(1-x)^{j+2}}.  \end{align*}

Thus, the statement holds for all positive integers k. \qquad \blacksquare

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):