Home » Blog » Find values for the given sums

Find values for the given sums

Given the fact that

    \[ \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x \qquad \text{for all } x. \]

Assuming that we can operate on infinite sums in the same way we can operate on finite sums, find expressions for each of the following sums.

  1. \displaystyle{\sum_{n=2}^{\infty} \frac{n-1}{n!}}.
  2. \displaystyle{\sum_{n=2}^{\infty} \frac{n+1}{n!}}.
  3. \displaystyle{\sum_{n=2}^{\infty} \frac{(n-1)(n+1)}{n!}}.

  1. We compute,

        \begin{align*}  \sum_{n=2}^{\infty} \frac{n-1}{n!} &= \sum_{n=2}^{\infty} \frac{1}{(n-1)!} - \sum_{n=2}^{\infty} \frac{1}{n!} \\[9pt]  &= \sum_{n=1}^{\infty} \frac{1}{n!} - \sum_{n=2}^{\infty} \frac{1}{n!} \\[9pt]  &= \sum_{n=1}^{\infty} \frac{1}{n!} - \sum_{n=1}^{\infty} \frac{1}{n!} + 1 \\[9pt]  &= 1. \end{align*}

  2. We compute,

        \begin{align*}  \sum_{n=2}^{\infty} \frac{n+1}{n!} &= \sum_{n=2}^{\infty} \frac{1}{(n-1)!} + \sum_{n=2}^{\infty} \frac{1}{n!} \\[9pt] &= \sum_{n=1}^{\infty} \frac{1}{n!} + \sum_{n=2}^{\infty} \frac{1}{n!} \\[9pt] &= 2 \sum_{n=1}^{\infty} \frac{1}{n!} - 1 - 2 \\[9pt] &= 2e - 3. \end{align*}

  3. We compute,

        \begin{align*}  \sum_{n=2}^{\infty} \frac{(n-1)(n+1)}{n!} &= \sum_{n=2}^{\infty} \frac{(n+1)}{n (n-2)!} \\[9pt]  &= \sum_{n=2}^{\infty} \frac{1}{(n-2)!} + \sum_{n=2}^{\infty} \frac{1}{n(n-2)!} \\[9pt]  &= e + \sum_{n=2}^{\infty} \frac{n-1}{n!} \\[9pt]  &= e + 1 &(\text{part (a)}). \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):