Home » Blog » Find an N such that the given convergent sequence is within ε of its limit

Find an N such that the given convergent sequence is within ε of its limit

Consider the convergent sequence \{ a_n \} with terms defined by

    \[ a_n = (-1)^n \left( \frac{9}{10} \right)^n. \]

Let L = \lim_{n \to \infty} a_n. Find the value of L and the value of N such that |a_n - L| < \varepsilon for all n \geq N for each of the following values of \varepsilon:

  1. \varepsilon = 1,
  2. \varepsilon = 0.1,
  3. \varepsilon = 0.01,
  4. \varepsilon = 0.001,
  5. \varepsilon = 0.0001.

First, we know

    \[ \lim_{n \to \infty} (-1)^n \left( \frac{9}{10}\right)^n = \lim_{n \to \infty} \left(-\frac{9}{10}\right)^n = 0 \]

since \left|\frac{-9}{10}\right| = \frac{9}{10} < 1, so by (10.10) on page 380 of Apostol we know the limit is 0.
Then we have,

    \begin{align*}  |a_n - L| < \varepsilon && \implies && \left| \left(-\frac{9}{10} \right)^n \right| &< \varepsilon \\[9pt]  && \implies && \left( \frac{9}{10} \right)^n &< \varepsilon \\[9pt]  && \implies && \log \left(\frac{9}{10}\right)^n  &< \log \varepsilon \\[9pt]  && \implies && n \log \frac{9}{10} &< \log \varepsilon \\[9pt]  && \implies && n &> \frac{\log \varepsilon}{\log \frac{9}{10}}. \end{align*}

We reversed the inequality sign in the final step since \log \frac{9}{10} < 0 since \frac{9}{10} < 1. Thus, if N > \frac{\log \varepsilon}{\log \frac{9}{10}} then for every n \geq N we have |a_n| < \varepsilon. We compute for the given values of \varepsilon as follows:

  1. \varepsilon = 1 implies N = \frac{\log 1}{\log 0.9} = 0.
  2. \varepsilon = 0.1 implies N = \frac{\log 0.1}{\log 0.9}.
  3. \varepsilon = 0.01 implies N = \frac{\log 0.01}{\log 0.9}.
  4. \varepsilon = 0.001 implies N = \frac{\log 0.001}{\log 0.9}.
  5. \varepsilon = 0.0001 implies N = \frac{\log 0.0001}{\log 0.9}.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):