Home » Blog » Conclude if the given series converges or diverges and justify the conclusion

Conclude if the given series converges or diverges and justify the conclusion

Test the following series for convergence or divergence. Justify the decision.

    \[ \sum_{n=1}^{\infty} \frac{n^2}{2^n}. \]


The series converges. To show this we apply the integral test (Theorem 10.11 on page 397 of Apostol), letting

    \[ f(x) = \frac{x^2}{2^x}, \qquad t_n = \int_1^n \frac{x^2}{2^x} \, dx. \]

As in the previous exercise we evaluate the integral using integration by parts with

    \begin{align*}  u &= x^2, & du &= 2x \, dx \\ dv &= 2^{-x} \, dx & v &= \frac{-1}{2^x \log 2}. \end{align*}

Therefore,

    \begin{align*}  \int_1^n \frac{x^2}{2^x} \, dx &= \frac{-x^2}{2^x \log 2} \Bigr \rvert_1^n + \frac{2}{\log 2} \int_1^n \frac{x}{2^x} \, dx \\[9pt]  &= \frac{-n^2}{2^n \log 2} + \frac{1}{2 \log 2} + \frac{2}{\log 2} \int_1^n \frac{x}{2^x} \, dx. \end{align*}

But, from the previous exercise we know

    \[ \lim_{n \to \infty} \int_1^n \frac{x^}{2^x} \, dx \]

converges; hence,

    \[ \sum_{n=1}^{\infty} \frac{n^2}{2^n} \]

convergges.

2 comments

  1. Anonymous says:

    Very nice proof!

    I offer an alternative:

    Since \lim_{n \to \infty} \frac{\frac{n^2}{2^n}}{\frac{1}{n^2}} = 0 the series \sum_{n=1}^{\infty} \frac{n^2}{2^n} converges from T10.9 (below is the case for the limit being 0) since \sum_{n=1}^{\infty} \frac{1}{n^2} is the Riemann Zeta function \zeta(s) which converges.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):