Home » Blog » Conclude if the given series converges or diverges and justify the conclusion

Conclude if the given series converges or diverges and justify the conclusion

Test the following series for convergence or divergence. Justify the decision.

    \[ \sum_{n=1}^{\infty} \frac{n+1}{2^n}. \]


The series converges. We apply the integral test (Theorem 10.11 on page 397 of Apostol), letting

    \[ f(x) = \frac{x+1}{2^x}, \qquad t_n = \int_1^n \frac{x+1}{2^x} \, dx. \]

To evaluate the integral we use integration by parts with

    \begin{align*}  u &= x + 1, & du &= dx \\  dv &= \frac{1}{2^x} \, dx, & v &= -\frac{1}{2^x \log 2}. \end{align*}

Then we have

    \begin{align*}  \int_1^n \frac{x+1}{2^x} \, dx &= \frac{-(x+1)}{2^x \log 2} \Bigr \rvert_1^n + \int_1^n \frac{1}{2^x \log 2} \, dx \\[9pt]  &= \frac{-(n+1)}{2^n \log 2} + \frac{1}{\log 2} + \frac{1}{\log 2} \left( \frac{-n}{2^n \log 2} + \frac{1}{2 \log 2} \right). \end{align*}

Therefore, by the integral test we have

    \begin{align*}  \lim_{n \to \infty} \{ t_n \} &= \lim_{n \to \infty} \left( \frac{-(n+1)}{2^n \log 2} + \frac{1}{\log 2} + \frac{1}{2 (\log 2)^2} - \frac{n}{2^n (\log 2)^2} \right) \\[9pt]  &= \frac{1}{\log 2} + \frac{1}{2(\log 2)^2}. \end{align*}

Hence, the sequence \{ t_n \} converges; therefore, \{ s_n \} converges which implies the convergence of

    \[ \sum_{n=1}^{\infty} \frac{n+1}{2^n}. \]

One comment

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):