Home » Blog » Determine the convergence or divergence of f(n) = 1 + (n / (n+1)) cos (nπ / 2)

Determine the convergence or divergence of f(n) = 1 + (n / (n+1)) cos (nπ / 2)

Consider the function f(n) defined by

    \[ f(n) = 1 + \left( \frac{n}{n+1} \right) \cos \left( \frac{n \pi}{2} \right). \]

Determine whether the sequence \{ f(n) \} converges or diverges, and if it converges find the limit.


The sequence \{ f(n) \} diverges.
Proof. Suppose otherwise. Then there exists a real number L and a positive integer N such that

    \[ |f(n) - L| < \varepsilon \qquad \text{for all } \varepsilon > 0 \quad \text{for all } n > N. \]

Since N is positive, we know 4N > N and 4N+2 > N. Letting \varepsilon = \frac{1}{2} we then have

    \[ |f(4N) - L| < \frac{1}{2} \qquad \text{and} \qquad |f(4N+2) - L| < \frac{1}{2}, \]

which implies

    \[ \left| 1 + \left( \frac{4N}{4N+1} \right) \cos (2N \pi) - L \right| < \frac{1}{2} \qquad \text{and} \qquad \left| 1 + \left( \frac{4N+2}{4N+3}\right) \cos (2N \pi + \pi) - L \right| < \frac{1}{2}. \]

Therefore,

    \[  \left| 1 + \frac{4N}{4N+1} - L \right| < \frac{1}{2} \quad \text{and} \quad \left| L - 1 + \frac{4N+2}{4N+3} \right| < \frac{1}{2}. \]

So, adding these together and using the triangle inequality we then have,

    \begin{align*}  &&\left| 1 + \frac{4N}{4N+1} - L \right| + \left| L - 1 + \frac{4N+2}{4N+3} \right| &< 1 \\[9pt]  \implies && \left| \frac{4N}{4N+1} + \frac{4N+2}{4N+3} \right| &< 1 \\[9pt]  \implies && \frac{4N}{4N+1} + \frac{4N+2}{4N+3} &< 1. \end{align*}

But, both \frac{4N}{4N+1} and \frac{4N+2}{4N+3} are greater than \frac{3}{4} for all positive integers N, contradicting that \frac{4N}{4N+1} + \frac{4N+2}{4N+3} < 1 for some positive integer N. Hence, this sequence can have no such limit L and must diverge. \qquad \blacksquare

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):