Home » Blog » Prove some properties of the complex logarithm

Prove some properties of the complex logarithm

Extend the logarithm function to all nonzero complex numbers z by defining

    \[ \operatorname{Log} z = \log |z| + i \arg (z). \]

Use this formula to prove the following properties of the complex logarithm.

  1. \operatorname{Log} (-1) = \pi i, \displaystyle{\operatorname{Log} (i) = \frac{\pi i}{2}}.
  2. \operatorname{Log} (z_1 z_2) = \operatorname{Log} z_1 + \operatorname{Log} z_2 + 2n \pi i for n an integer.
  3. \displaystyle{\operatorname{Log} \left( \frac{z_1}{z_2} \right) = \operatorname{Log} z_1 - \operatorname{Log} z_2 + 2n \pi i}, where n is an integer.
  4. e^{\operatorname{Log} z} = z.

  1. Proof. For these we use the definition and compute,

        \[ \operatorname{Log} (-1) = \log |-1| + i \arg (-1) = 0 + \pi i = \pi i, \]

    and

        \[ \operatorname{Log} (i) = \log |i| + i \arg(i) = 0 + \frac{\pi i}{2} = \frac{1}{2} \pi i. \qquad \blacksquare\]

  2. Proof. Let z_1 = r_1 e^{i \theta_1} and z_2 = r_2 e^{i \theta_2}. Then,

        \begin{align*}  \operatorname{Log} (z_1 z_2) &= \log |z_1 z_2| + i \arg(z_1 z_2) \\   &= \log (|z_1||z_2|) + i \arg (\theta_1 + \theta_2 + 2n \pi) \\  &= \log |z_1| + i \theta_1 + \log |z_2| + i \theta_2 + 2n i \pi \\  &= \operatorname{Log} z_1 + \operatorname{Log} z_2 + 2n i \pi. \qquad \blacksquare \end{align*}

  3. Proof. Again, we compute,

        \begin{align*}  \operatorname{Log} \left( \frac{z_1}{z_2} \right) &= \log \left| \frac{z_1}{z_2} \right| + i \arg \left( \frac{z_1}{z_2} \right) \\[9pt]  &= \log \frac{|z_1|}{|z_2|} + i (\theta_1 - \theta_2 + 2n i \pi ) \\[9pt]  &= \log |z_1| + i \theta_1 - \log|z_2| - i \theta_2 + 2n i \pi \\[9pt]  &= \operatorname{Log} z_1 - \operatorname{Log} z_2 + 2n i \pi. \qquad \blacksquare \end{align*}

  4. Proof. Finally, we have

        \[  e^{\operatorname{Log} z} = e^{\log |z| + i \arg(z)} = e^{\log |z|}e^{i \arg (z)} = e^{\log r} e^{i \theta} = re^{i \theta} = z. \qquad \blacksquare\]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):