Home » Blog » Determine the convergence or divergence of f(n) = (n2/3 sin (n!)) / (n+1)

Determine the convergence or divergence of f(n) = (n2/3 sin (n!)) / (n+1)

Consider the function f(n) defined by

    \[ f(n) = \frac{n^{\frac{2}{3}} \sin (n!)}{n+1}. \]

Determine whether the sequence \{ f(n) \} converges or diverges, and if it converges find the limit.


We divide the numerator and denominator of f(n) by \frac{1}{n},

    \begin{align*}  f(n) &= \frac{n^{\frac{2}{3}} \sin (n!)}{n+1} \\[9pt]  &= \frac{ \frac{1}{n^{\frac{1}{3}}} \sin (n!) }{1 + \frac{1}{n}}. \end{align*}

Since |\sin (n!)| \leq 1 for all n we have

    \[ \lim_{n \to \infty} \frac{1}{n^{\frac{1}{3}}} \sin (n!) = 0. \]

Since

    \[ \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right) = 1 \]

we then have that both limits in the quotient exist, and the limit of the denominator is nonzero; hence,

    \[ \lim_{n \to \infty} f(n) = \frac{0}{1} = 0. \]

Therefore, the sequence \{ f(n) \} converges to the limit 0.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):