Home » Blog » Determine the convergence or divergence of f(n) = (n+1)1/2 – n1/2

Determine the convergence or divergence of f(n) = (n+1)1/2 – n1/2

Consider the function f(n) defined by

    \[ f(n) = \sqrt{n+1} - \sqrt{n}. \]

Determine whether the sequence \{ f(n) \} converges or diverges, and if it converges find the limit.


First, we use multiply the numerator and denominator by \sqrt{n+1} + \sqrt{n},

    \begin{align*}  f(n) &= \sqrt{n+1} - \sqrt{n} \\[9pt]  &= \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} \\[9pt]  &= \frac{n+1 - n}{\sqrt{n+1} + \sqrt{n}} \\[9pt]  &= \frac{1}{\sqrt{n+1} + \sqrt{n}}. \end{align*}

Then, since \sqrt{n+1} > \sqrt{n} we have

    \[ 0 < \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2 \sqrt{n}}. \]

Since we know from property (10.9) on page 380 of Apostol that

    \[ \lim_{n \to \infty} \frac{1}{n^{\alpha}} = 0 \qquad \text{if } \alpha > 0 \]

we then have

    \[ \lim_{n \to \infty} \frac{1}{2 \sqrt{n}} = 0. \]

Hence, by the squeeze theorem we have

    \[ \lim_{n \to \infty} f(n) = 0. \]

Therefore the sequence \{ f(n) \} converges with limit 0.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):