Home » Blog » Determine the convergence or divergence of f(n) = (-1)n / n + (1+(-1)n) / 2

Determine the convergence or divergence of f(n) = (-1)n / n + (1+(-1)n) / 2

Consider the function f(n) defined by

    \[ f(n) = \frac{(-1)^n}{n} + \frac{1+(-1)^n}{2}. \]

Determine whether the sequence \{ f(n) \} converges or diverges, and if it converges find the limit.


The sequence \{ f(n) \} diverges.
Proof. Suppose otherwise, that there exists a real number L and a positive integer N such that

    \[ |f(n) - L| < \varepsilon \qquad \text{for all } \varepsilon > 0 \quad \text{for all } n > N. \]

Since N is a positive integer we have 2N  > N and 2N+1>N. Thus,

    \begin{align*}  && |f(2N) - L| &< \varepsilon & \text{and} && |f(2N+1) - L| &< \varepsilon \\[9pt] \implies && \left| \frac{1}{2N} + 1 - L \right| & < \varepsilon & \text{and}  && \left| \frac{-1}{2N+1} - L \right| &< \varepsilon \\ \implies && && && \left| \frac{1}{2N+1} + L \right| &< \varepsilon. \end{align*}

Therefore, using the triangle inequality we have

    \begin{align*}  && \left| \frac{1}{2N} + 1 - L \right| + \left| \frac{1}{2N+1} + L \right| &< 2 \varepsilon \\[9pt]  \implies && \left| \frac{1}{2N} + 1 - L + \frac{1}{2N+1} + L \right| &< 2 \varepsilon \\[9pt]  \implies && \left| 1 + \frac{1}{2N} + \frac{1}{2N+1} \right| &< 2 \varepsilon. \end{align*}

But, this is false for any 0 < \varepsilon < \frac{1}{2}. Hence, there can be no such L, so \{ f(n) \} diverges. \qquad \blacksquare

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):