Home » Blog » Determine the convergence or divergence of f(n) = 1 + (-1)n

Determine the convergence or divergence of f(n) = 1 + (-1)n

Consider the function f(n) defined by

    \[ f(n) = 1 + (-1)^n. \]

Determine whether the sequence \{ f(n) \} converges or diverges, and if it converges find the limit.


The sequence \{ f(n) \} diverges.
Proof. Suppose otherwise, that there exists an L \in \mathbb{R} and a positive integer N such that

    \[ | f(n) - L | < \varepsilon \qquad \text{for all } \varepsilon > 0 \qquad \text{for all } n > N. \]

Since N is a positive integer, we have 2N > N and 2N+1>N. Taking \varepsilon = \frac{1}{2} we then have

    \begin{align*}  &&|f(2N) - L| &< \frac{1}{2} & \text{and} && | f(2N+1) - L | &< \frac{1}{2} \\[9pt]  \implies && |2-L| &< \frac{1}{2} & \text{and} && |-L| &< \frac{1}{2}. \end{align*}

But then by the triangle inequality this implies

    \[ |2-L| + |L| < 1 \quad \implies \quad |2-L+L| < 1 \quad \implies \quad 2 < 1, \]

a contradiction. Thus, \{ f(n) \} diverges. \qquad \blacksquare

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):