Home » Blog » Prove properties of polynomials of a complex variable with real coefficients

Prove properties of polynomials of a complex variable with real coefficients

Consider the polynomial f(z) of a complex variable with real coefficients.

  1. Prove that

        \[ \overline{f(z)} = f (\overline{z}) \]

    for all z \in \mathbb{C}.

  2. Using part (a) show that if f has any nonreal zeros, they must occur in pairs of a complex number and its conjugate.

  1. Proof. Let

        \[ f(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n \qquad a_i \in \mathbb{R}. \]

    Then, using the properties of conjugation we have,

        \begin{align*}  \overline{f(z)} &= \overline{a_0 + a_1 z + \cdots + a_n z^n} \\  &= \overline{a_0} + \overline{a_1 z} + \cdots + \overline{a_n z^n} &(\text{since } \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}) \\  &= \overline{a_0} + \overline{a_1} \, \overline{z} + \cdots + \overline{a_n} \, \overline{z^n} &(\text{since } \overline{z_1 z_2} = \overline{z_1} \overline{z_2})\\  &= a_0 + a_1 \overline{z} + a_2 \overline{z^2} + \cdots + a_n \overline{z_n} &(\text{since } \overline{a} = a \text{ for } a \in \mathbb{R}) \\  &= a_0 + a_1 \overline{z} + a_2 (\overline{z})^2 + \cdots + a_n (\overline{z})^n \\  &= f(\overline{z}). \end{align*}

    (The final line follows since \overline{z^2} = \overline{z \cdot z} = \overline{z} \cdot \overline{z} = (\overline{z})^2 and then induction for to get \overline{z^n} = (\overline{z})^n for all n.) This completes the proof. \qquad \blacksquare

  2. Proof. If z is a non-real zero of f then

        \[ f(z) = 0 \quad \implies \quad \overline{f(z)} = 0 \quad \implies \quad f(\overline{z}) = 0, \]

    and z \neq \overline{z} (since z is not real by assumption). Hence, \overline{z} is also a zero of f, so the non-real zeros come in pairs. \qquad \blacksquare

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):