Home » Blog » Compute the modulus and principal argument of given complex numbers

Compute the modulus and principal argument of given complex numbers

For each of the following complex numbers, compute the modulus and principal argument.

  1. 2i.
  2. -3i.
  3. -1.
  4. 1.
  5. -3 + \sqrt{3}i.
  6. \frac{1+i}{\sqrt{2}}.
  7. (-1+i)^3.
  8. (-1-i)^3.
  9. \frac{1}{1+i}.
  10. \frac{1}{(1+i)^2}.

  1. First, the modulus is given by

        \[ |2i| = \sqrt{2^2} = 2. \]

    The principal argument is the unique \theta \in (-\pi, pi] such that

        \[ x = r \cos \theta, \qquad y = r \sin \theta. \]

    In this case we have x = 0, y = 2 and r = \sqrt{2} so the principal argument satisfies

        \[ 2 \cos \theta = 0, \ \  2 \sin \theta = 2 \qquad \implies \qquad \theta = \frac{\pi}{2}. \]

  2. First, the modulus is given by

        \[ |-3i| = \sqrt{(-3)^2} = 3. \]

    The principal argument \theta \in (-\pi, \pi] satisfies

        \[ 3 \cos \theta = 0, \ \ 3 \sin \theta = -3 \qquad \implies \qquad \theta = -\frac{\pi}{2}. \]

  3. The modulus is given by

        \[ |-1| = \sqrt{(-1)^2} = 1. \]

    The principal argument \theta \in (-\pi, \pi] satisfies

        \[ \cos \theta = -1, \ \ \sin \theta = 0 \qquad \implies \qquad \theta = \pi. \]

  4. The modulus is given by

        \[ |1| = \sqrt{1^2} = 1. \]

    The principal argument \theta \in (-\pi, \pi] satisfies

        \[ \cos \theta = 1, \ \ \sin \theta = 0 \qquad \implies \qquad \theta = 0. \]

  5. The modulus is given by

        \[ |-3+\sqrt{3}i| = \sqrt{(-3)^2 + \sqrt{3}^2} = \sqrt{12} = 2 \sqrt{3}. \]

    The principal argument \theta \in (-\pi, \pi] satisfies

        \begin{align*}  && 2 \sqrt{3} \cos \theta &= -3 & \text{and} && 2 \sqrt{3} \sin \theta &= \sqrt{3} \\  \implies && \cos \theta &= -\frac{\sqrt{3}}{2} & \text{and} && \sin \theta &= \frac{1}{2} \\  \implies && \theta &= \frac{5 \pi}{6}.  \end{align*}

  6. The modulus is given by

        \[ \left| \frac{1 + i}{\sqrt{2}} \right| = \sqrt{\left( \frac{1}{\sqrt{2}} \right)^2 + \left( \frac{1}{\sqrt{2}} \right)^2} = \sqrt{1} = 1. \]

    The principal argument \theta \in (-\pi, \pi] satisfies

        \[ \cos \theta = \frac{1}{\sqrt{2}}, \ \ \sin \theta = \frac{1}{\sqrt{2}} \qquad \implies \qquad \theta = \frac{\pi}{4}. \]

  7. First, we write (-1+i)^3 in the form a+bi,

        \[ (-1+i)^3 = 2 + 2i. \]

    Therefore, the modulus is

        \[ |(-1+i)^3| = |2+2i| = \sqrt{2^2 + 2^2} = 2\sqrt{2}. \]

    The principal argument \theta \in (-\pi, \pi] satisfies

        \begin{align*}  && 2 \sqrt{2} \cos \theta &= 2 & \text{and} && 2 \sqrt{2} \sin \theta &= 2 \\  \implies && \cos \theta &= \frac{1}{\sqrt{2}} & \text{and} && \sin \theta &= \frac{1}{\sqrt{2}} \\  \implies && \theta &= \frac{\pi}{4}. \end{align*}

  8. First, we rewrite (-1-i)^3 in the form a+bi,

        \[ (-1-i)^3 = (-1-i)(-1-i)(-1-i) = (2i)(-1-i) = 2 - 2i. \]

    Therefore, the modulus is

        \[ |(-1-i)^3| = |2 - 2i| = \sqrt{2^2 + (-2)^2} = 2 \sqrt{2}. \]

    The principal argument \theta \in (-\pi, \pi] satisfies

        \begin{align*}  && 2 \sqrt{2} \cos \theta &= 2 & \text{and} && 2 \sqrt{2} \sin \theta &= -2 \\  \implies && \cos \theta &= \frac{1}{\sqrt{2}} & \text{and} && \sin \theta &= -\frac{1}{\sqrt{2}} \\  \implies && \theta &= -\frac{\pi}{4}. \end{align*}

  9. First, we rewrite \frac{1}{1+i} in the form a+bi,

        \[ \frac{1}{1+i} = \frac{1-i}{(1+i)(1-i)} = \frac{1-i}{2} = \frac{1}{2} - \frac{1}{2}i. \]

    Therefore, the modulus is

        \[ \left| \frac{1}{1+i} \right| = \left|\frac{1}{2} - \frac{1}{2}i \right| = \sqrt{\left( \frac{1}{2} \right)^2 + \left(\frac{-1}{2}\right)^2} = \frac{1}{\sqrt{2}}. \]

    The principal argument \theta \in (-\pi, \pi] satisfies

        \begin{align*}  && \frac{1}{\sqrt{2}} \cos \theta &= \frac{1}{2} & \text{and} && \frac{1}{\sqrt{2}} \sin \theta &= -\frac{1}{2} \\  \implies && \cos \theta &= \frac{1}{\sqrt{2}} & \text{and} && \sin \theta &= -\frac{1}{\sqrt{2}} \\  \implies && \theta &= -\frac{\pi}{4}.  \end{align*}

  10. First, we rewrite \frac{1}{(1+i)^2} in the form a+bi,

        \[ \frac{1}{(1+i)^2} = \frac{1}{2i} = -\frac{1}{2}i . \]

    The modulus is

        \[ \left| \frac{1}{(1+i)^2} \right| = \left| \frac{-1}{2}i\right| = \sqrt{\left( \frac{-1}{2} \right)^2} = \frac{1}{2}. \]

    The principal argument \theta \in (-\pi, \pi] satisfies

        \[ \frac{1}{2} \cos \theta = 0, \ \ \frac{1}{2} \sin \theta = -\frac{1}{2} \qquad \implies \qquad \theta = -\frac{\pi}{2}. \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):