Home » Blog » Prove a substitution converts a given second order equation to a first order equation

Prove a substitution converts a given second order equation to a first order equation

  1. Consider the second-order differential equation

        \[ y'' + P(x) y' + Q(x) y = 0 \]

    and let u be a solution to the equation. Show that the substitution y = uv converts the equation

        \[ y''  + P(x)y' + Q(x)y = R(x) \]

    into a first-order liner equation for v'.

  2. By inspection, find a nonzero solution of the second order differential equation

        \[ y'' - 4y' + x^2 (y' - 4y) = 0 \]

    and use part (a) to find a solution of the differential equation

        \[ y'' - 4y' + x^2(y' - 4y) = 2xe^{-\frac{x^3}{3}} \]

    with

        \[ y = 0 \quad \text{and} \quad y' = 4 \quad \text{when } x = 0. \]


Incomplete.

7 comments

  1. Evangelos says:

    a.) If we make the substitution y = uv, with u being a nonzero function satisfying

        \begin{align*} y'' + P(x)y' + Q(x)y &= 0 \end{align*}

    The equation

        \begin{align*} y'' + P(x)y' + Q(x)y &= R(x) \end{align*}

    Becomes

        \begin{align*} (u''v + 2u'v' + v''u) + P(x)(u'v + v'u) + Q(x)(uv) \end{align*}

    Grouping terms by multiples of v and its derivatives gives us

        \begin{align*} v''u + v'(2u' + P(x)u) + v(u'' + P(x)u' + Q(x)u) &= R(x) \\ \end{align*}

    Since u satisfies y'' + P(x)y' + Q(x)y = 0, we get

        \begin{align*} v''u + v'(2u' + P(x)u) &= R(x) \\ \end{align*}

    And since u is a nonzero function, we can divide both sides by it, giving us

        \begin{align*} v'' + v'(2\frac{u'}{u} + P(x)) &= \frac{R(x)}{u} \end{align*}

    If we let F(x) = (2\frac{u'}{u} + P(x)) and G(x) = \frac{R(x)}{u}, the above equation becomes

        \begin{align*} v'' + F(x)v' &= G(x) \end{align*}

    Which is a linear first-order equation of v’, as requested.

  2. Evangelos says:

    a.) If we make the substitution y = uv, with u being a nonzero function satisfying

        \begin{align*} y'' + P(x)y' + Q(x)y &= 0 \end{align*}

    The equation

        \begin{align*} y'' + P(x)y' + Q(x)y &= R(x) \end{align*}

    Becomes

        \begin{align*} (u''v + 2u'v' + v''u) + P(x)(u'v + v'u) + Qx)(uv) \end{align*}

    Grouping terms by multiples of v and its derivatives gives us

        \begin{align*} v''u + v'(2u' + P(x)u) + v(u'' + P(x)u' + Q(x)u) &= R(x) \\ \end{align*}

    Since u satisfies y'' + P(x)y' + Q(x)y = 0, we get

        \begin{align*} v''u + v'(2u' + P(x)u) &= R(x) \\ \end{align*}

    And since u is a nonzero function, we can divide both sides by it, giving us

        \begin{align*} v'' + v'(2\frac{u'}{u} + P(x)) &= \frac{R(x)}{u} \end{align*}

    If we let F(x) = (2\frac{u'}{u} + P(x)) and G(x) = \frac{R(x)}{u}, the above equation becomes

        \begin{align*} v'' + F(x)v' &= G(x) \end{align*}

    Which is a linear first-order equation of v’, as requested.

    b.) By inspection, u = e^{4x} is a nonzero function that satisfies

        \begin{align*} y'' - 4y' + x^{2}(y' - 4y) &= 0 \end{align*}

    Now, if we use the method of substitution from part (a.), the equation

        \begin{align*} y'' - 4y' + x^{2}(y' - 4y) &= 2xe^{-x^{3}/3} \end{align*}

    Becomes

        \begin{align*} v''(u) + v'(2u' + (x^{2} - 4)) &= 2xe^{-x^{3}/3} \end{align*}

    And since we know that u = e^{4x}, the above equation becomes

        \begin{align*} v'' + v(x^{2} + 4) &= 2xe^{-(\frac{x^{3}}{3} + 4x)} \end{align*}

    Which is a linear equation of v'. If we let

        \begin{align*} P(x) &= x^{2} + 4 \\ Q(x) &= 2xe^{-(\frac{x^{3}}{3} + 4x)} \\ A(x) &= \int_{0}^{x} t^{2} + 4 \quad dt \\ &= \frac{x^{3}}{3} + 4x \end{align*}

    Then

        \begin{align*} v' &= e^{-A(x)}(v'(0) + \int_{0}^{x}Q(t)e^{A(t)} dt) \\ &= e^{-(\frac{x^{3}}{3} + 4x)}(v'(0) + x^2) \end{align*}

    Now, we can deduce the value of v'(0) using our given information. We know that y' = u'v + v'u, and we also know that when x = 0, u = u' = 1, and y = uv = 0, so v must be 0. Plugging in those values gives us y' = v' = 4 when x = 0. Thus:

        \begin{align*} v' &= e^{-(\frac{x^{3}}{3} + 4x)}(x^{2} + 4) \end{align*}

    But if that is the case, then we can integrate v' to give us

        \begin{align*} v &= \int_{0}^{x} e^{-(\frac{t^{3}}{3} + 4t)}(t^{2} + 4) dt \\ &= 1 -e^{-(\frac{x^{3}}{3} + 4x)} \end{align*}

    And since y = uv, we can multiply to get

        \begin{align*} y &= e^{4x} - e^{-x^{3}/3} \end{align*}

  3. Evangelos says:

    a.) We start with our substitution of y = uv

        \begin{align*} y &= uv \\ y' &= u'v + v'u \\ y'' &= u''v + 2u'v' + v''u\\ \end{align*}

    And the equation

        \begin{align*} y'' + P(x)y' + Q(x)y &= R(x) \end{align*}

    Becomes

        \begin{align*} (u''v + 2u'v' + v''u) + P(x)(u'v + v'u) + Q(x)(uv) &= R(x) \end{align*}

    Now, if we group together terms by v and its derivatives, we get

        \begin{align*} v''u + v'(2u' + P(x)u) + v(u'' + P(x)u' + Q(x)u) &= R(x) \end{align*}

    But, we know from our given information that u satisfies

        \begin{align*} y'' + P(x)y' + Q(x)y &= 0 \end{align*}

    So the factor multiplying v becomes 0, giving us

        \begin{align*} v''u + v'(2u' + P(x)u) &= R(x) \end{align*}

    Since u is a nonzero function, we can divide both sides by it, giving us

        \begin{align*} v'' + v'(2\frac{u'}{u} + P(x)) &=\frac{R(x)}{u} \end{align*}

    Now, if we define two new functions of x as follows

        \begin{align*} F(x) &= 2\frac{u'}{u} + P(x) \\ G(x) &= \frac{R(x)}{u} \end{align*}

    The above differential equation becomes

        \begin{align*} v'' + F(x)v' &= G(x) \end{align*}

    Which is a first-order linear equation of v’

    b.) By inspection, we are to find a nonzero function u = f(x) that satisfies the equation

        \begin{align*} y'' -4y' + x^{2}(y' - 4y) &= 0 \end{align*}

    The following function satisfies the equation

        \begin{align*} u &= e^{4x} \end{align*}

    Now, we are to use the function u and the information from part (a.) to find a solution to the following equation

        \begin{align*} y'' -4y' + x^{2}(y' - 4y) &= 2xe^{-x^{3}/3} \end{align*}

    From part (a.), we know that we can use the substitution y = uv to turn the above equation into a first-order linear equation of v', as follows

        \begin{align*} (u''v + 2u'v' + v''u) - 4(u'v + v'u) + x^{2}((u'v + v'u) - 4(uv)) &= 2xe^{-x^{3}/3} \end{align*}

        \begin{align*} v''u + v'(2u' - 4u + x^{2}u) + v(u'' -4u' + x^{2}((u' - 4u)) &= 2xe^{-x^{3}/3} \end{align*}

    And of course, from our inspection, we know that u'' -4u' + x^{2}((u' - 4u) = 0, so

        \begin{align*} v''u + v'(2u' - 4u + x^{2}u) &= 2xe^{-x^{3}/3} \end{align*}

    And we know that u = e^{4x}, so the above equation becomes

        \begin{align*} v''(e^{4x}) + v'(4e^{4x} + x^{2}e^{4x}) &= 2xe^{-x^{3}/3} \end{align*}

    And since the exponential function is never 0 for any real x, we can divide both sides by e^{4x} to give

        \begin{align*} v'' + v'(4 + x^{2}) &= 2xe^{-(\frac{x^3}{3} + 4x)} \end{align*}

    Now, since this is a linear equation of v’, we can use the equation from Theorem 8.3, along with our given values when x = 0, to give an equation for v’. Let

        \begin{align*} P(x) &= (x^{2} + 4)\\ Q(x) &= 2xe^{-(\frac{x^3}{3} + 4x)} A(x) &= \int_{0}^{x} (t^{2} + 4) dt \\  &= \frac{x^{3}}{3} + 4x \end{align*}

    Our equation for v' becomes

        \begin{align*} v' &= e^{-A(x)}(v'(0) + \int_{0}^{x}Q(t)e^{A(t)} dt \\ &= e^{-(\frac{x^{3}}{3} + 4x)}(v'(0) + x^{2}) \end{align*}

    Going back to our given information, we know that y = uv or v = \frac{y}{u}, so when x = 0, v = 0 since y = 0 and u = 1. As such, y'(0) = u'(0)v(0) + v'(0)u(0) = v'(0) = 4. Giving us

        \begin{align*} v' &= e^{-(\frac{x^{3}}{3} + 4x)}(4 + x^{2}) \end{align*}

    Integrating this gives us

        \begin{align*} v &= -e^{-(\frac{x^{3}}{3} + 4x)} + C \end{align*}

    And since we know that v(0) = 0, the constant C must be 1. Now, to get y, we go back to our original substitution y = uv

        \begin{align*} y &= uv \\ &= (e^{4x})(-e^{-(\frac{x^{3}}{3} + 4x)} + 1) \\ &= e^{4x} - e^{-x^{3}/3} \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):