Home » Blog » Integrate the given differential equation

Integrate the given differential equation

Integrate the following differential equation:

    \[ y' = \frac{y (x^2+xy+y^2)}{x(x^2 + 3xy + y^2)}. \]


First, we rearrange the terms on the right hand side with the goal of making the substitution v = \frac{y}{x},

    \begin{align*}  \frac{y(x^2+xy+y^2)}{x(x^2+3xy+y^2)} &= \frac{x^2y + xy^2 + y^3}{x^3 + 3x^2 y + xy^2} \\[9pt]  &= \frac{ \left( \frac{y}{x} \right) + \left( \frac{y}{x} \right)^2 + \left( \frac{y}{x} \right)^3}{1 + 3 \left( \frac{y}{x} \right) + \left( \frac{y}{x} \right)^2}. \end{align*}

Now we make the substitution v = \frac{y}{x} which gives us y' = v + v'x and so we have

    \begin{align*}  && y' &= \frac{y(x^2+xy+y^2)}{x(x^2 + 3xy + y^2)} \\[9pt]  \implies && v + v'x &= \frac{v + v^2 + v^3}{1 + 3v + v^2} \\[9pt]  \implies && v'x &= \frac{v+v^2 + v^3 - v - 3v^2 - v^3}{1+3v + v^2} \\[9pt]  \implies && v'x &= -\frac{2v^2}{1+3v+v^2} \\[9pt]  \implies && \int \frac{1}{x} \, dx &= -\frac{1}{2} \int \frac{1+3v+v^2}{v^2} \, dv \\[9pt]  \implies && \log |x| + C &= -\frac{1}{2} \left( -\frac{1}{v} + \log |v|^3 + v \right) \\[9pt]  \implies && \log (x^2) + C &= \frac{x}{y} - \log \left(\frac{y^3}{x^3} \right) - \frac{y}{x} \\[9pt]  \implies && C &= \frac{x}{y} - \frac{y}{x} + \log \left( \frac{x^3}{y^3} \right) + \log \left( \frac{1}{x^2} \right) \\[9pt]  \implies && C &= \frac{x}{y} - \frac{y}{x} + \log \left( \frac{x}{y^3} \right) \\[9pt]  \implies && C &= \frac{y}{x} - \frac{x}{y} + \log \left( \frac{y^3}{x} \right). \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):