Home » Blog » Integrate the differential equation y′ = (x2 + 2y2) / (xy)

Integrate the differential equation y′ = (x2 + 2y2) / (xy)

Integrate the differential equation:

    \[ y' = \frac{x^2 + 2y^2}{xy}. \]


Like in the previous exercise (Section 8.26, Exercise #3) we make the substitution y = vx which implies y' = v + v'x. Therefore,

    \begin{align*}  y' = \frac{x^2 + 2y^2}{xy} && \implies && y' &= \frac{x}{y} + 2 \frac{y}{x} \\  && \implies && v + v'x &= \frac{1}{v} + 2v \\[9pt]  && \implies && v' \left( \frac{v}{1+v^2} \right) &= \frac{1}{x} \\[9pt]  && \implies && \int \frac{v}{1+v^2} \, dv &= \int \frac{1}{x} \, dx \\[9pt]  && \implies && \frac{1}{2} \log (1+v^2) &= \log |x| + C \\[9pt]  && \implies && \log \left( \frac{x^2+y^2}{x^2} \right) &= \log (x^2) + C \\[9pt]  && \implies && \log (x^2+y^2) &= \log (x^4) + C \\[9pt]  && \implies && x^2 + y^2 &= Cx^4.  \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):