The simplest population growth law is given by
where is the population and
is a constant dependent on the type of population in question. A more involved growth law in which the population is subject to a maximum constraint
, gives an equation for population growth of
where is a constant, or possibly a function of time.
Express the population as a function of
in each of these growth laws (with
and
both constant). Prove that the result in the second growth law can be expressed as:
where is a constant and
is the time at which
.
Proof. For the first growth law,
This has solutions of the form
where at time
.
For the second, more complicated, growth law we have
This is a Bernoulli equation (as seen in this exercise, Section 8.5 Exercise #13) so we know where
is the unique solution to
Thus, we are looking for the unique solution of
Using Theorem 8.3 (page 310 of Apostol) for the solutions of first-order linear differential equations, we have
Therefore,
So, if we have , then
and
, so
where
Rori- wondering if you could explain how you got T0=T1 at the end. Is this just the obvious choice to remove the exponential? Thanks.
Okay think I got it now- T1 was just used for the initial condition ,a, and M/2 ,a constant value, is set as x(a)=b.