Home » Blog » Find the general solution of y′′ – 4y = e2x

Find the general solution of y′′ – 4y = e2x

Find the general solution of the second-order differential equation

    \[ y'' - 4y = e^{2x}. \]

If the solution is not valid everywhere, describe the interval on which it is valid.


The general solution of the homogeneous equation

    \[ y'' - 4y = 0 \]

is given by Theorem 8.7 with a = 0 and b = -4. This gives us d = a^2 - 4b = 16; hence, k = \frac{1}{2} \sqrt{d} = 2. Thus,

    \begin{align*}  y &= e^{-\frac{ax}{2}} (c_1 e^{kx} + c_2 e^{-kx}) \\  &= c_1 e^{2x} + c_2 e^{-2x}. \end{align*}

To find a particular solution of y'' - 4y = e^{2x} assume y_1 = p(x)e^{2x} is a solution. Then,

    \begin{align*}  y_1' &= 2p(x) e^{2x} + p'(x)e^{2x} \\  y_1'' &= p''(x) e^{2x} + 4p'(x) e^{2x} + 4p(x) e^{2x}. \end{align*}

Therefore,

    \begin{align*}  &&p''(x)e^{2x} + 4p'(x) e^{2x} + 4p(x) e^{2x} - 4p(x) e^{2x} &= e^{2x} \\ \implies && p''(x) + 4p'(x) = 1.  \end{align*}

Now, let p(x) = Ax + B, then we have

    \[ 4A = 1 \quad \implies \quad A = \frac{1}{4}\quad \implies \quad p(x) = \frac{1}{4}x. \]

Thus, $y_1 = \frac{1}{4} x e^{2x}. \] Hence, the general solution is given by

    \[ y = c_1 e^{2x} + c_2 e^{-2x} + \frac{1}{4} x e^{2x} = e^{2x} \left( \frac{1}{4} x + c_1 \right) + c_2 e^{-2x}. \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):