Home » Blog » Find the general solution of y′′ + 4y = e-2x

Find the general solution of y′′ + 4y = e-2x

Find the general solution of the second-order differential equation

    \[ y'' + 4y = e^{-2x}.\]

If the solution is not valid everywhere, describe the interval on which it is valid.


The general solution of the homogeneous equation

    \[ y'' + 4y = 0 \]

is given by Theorem 8.7 with a = 0 and b = 4. This gives us d = a^2 - 4b = -16; hence, k = \frac{1}{2} \sqrt{-d} = 2. Thus,

    \begin{align*}  y &= e^{-\frac{ax}{2}} (c_1 \cos(kx) + c_2 \sin(kx)) \\  &= c_1 \cos(2x) + c_2 \sin(2x). \end{align*}

To find a particular solution of y'' + 4y = e^{-2x} assume y_1 = p(x)e^{-2x} is a solution. Then,

    \begin{align*}  y_1' &= -2p(x) e^{-2x} + p'(x)e^{-2x} \\  y_1'' &= 4p(x) e^{-2x} - 4p'(x) e^{-2x} + p''(x) e^{2x}. \end{align*}

Therefore,

    \begin{align*}  &&4p(x) e^{-2x} - 4p'(x)e^{-2x} + p''(x)e^{-2x} + 4p(x) e^{-2x} &= e^{-2x} \\ \implies && p''(x) - 4p'(x) + 8p(x) &= 1 \\ \implies && p(x) &= \frac{1}{8}. \end{align*}

Thus, y_1 = \frac{1}{8}e^{-2x}. Hence, the general solution is given by

    \[ y = c_1 \cos (2x) + c_2 \sin (2x) + \frac{1}{8} e^{-2x}. \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):