Home » Blog » Find an implicit formula satisfied by solutions of xy(1 + x2) y′ – (1 + y2) = 0

Find an implicit formula satisfied by solutions of xy(1 + x2) y′ – (1 + y2) = 0

Assume solutions of the equation

    \[ xy (1 + x^2) y' - (1+y^2) = 0 \]

exist and find an implicit formula satisfied by these solutions.


This is a separable first-order equation. We compute

    \begin{align*}  xy (1+x^2) y' - (1+y^2) = 0 && \implies && y' \left( \frac{y}{1+y^2} \right) &= \frac{1}{x(1+x^2)} \\  && \implies && \int \frac{y}{1+y^2} \, dy &= \int \frac{1}{x(1+x^2)} \, dx \\  && \implies && \frac{1}{2} \log (1+y^2) &= \int \frac{1}{x} \,dx - \int \frac{x}{1+x^2} \, dx \\  && \implies && \frac{1}{2} \log (1+y^2) &= \log |x| - \frac{1}{2} \log (1+x^2) + C \\  && \implies && (1+y^2)(1+x^2) &= Cx^2. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):