Home » Blog » Find all solutions of y′′ + 25y = 0 for given initial values

Find all solutions of y′′ + 25y = 0 for given initial values

Find the particular solution of the differential equation

    \[ y'' + 25y = 0 \]

satisfying the initial condition y = -1 and y' = 0 when x = 3.


This is a second-order linear differential equation of the form

    \[ y'' + ay' + by = 0 \qquad \text{with} \qquad a= 0, \ \ b = 25. \]

These values of a and b give us d = a^2 - 4b = -100. So, d < 0 and k = \frac{1}{2} \sqrt{-d} = 5. By Theorem 8.7 (pages 326-327 of Apostol) we then have

    \begin{align*}  &&y &= c_1 u_1 + c_2 u_2 & u_1 = \cos (kx), \quad u_2 = \sin (kx) \\ \implies && y&= c_1 \cos(5x) + c_2 \sin (5x) \\ \implies && y'&= -5c_1 \sin (5x) + 5c_2 \cos (5x). \end{align*}

We then use the initial conditions y(3) = -1 and y'(3) = 0 to solve for c_1 and c_2,

    \begin{align*}  0 = y'(3) &= -5c_1 \sin 15 + 5c_2 \cos 15 & \implies && c_1 = c_2 \cot 15 \\  -1 = y(3) &= c_1 \cos 15 + c_2 \sin 15 & \implies && c_2 = -\sin 15, \ \ c_1 = -\cos 15. \end{align*}

Therefore,

    \[ y = -\cos 15 \cos (5x) - \sin 15 \sin (5x). \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):