Home » Blog » Determine the general solution of y′′ – 3y′ = 2e2x sin x

Determine the general solution of y′′ – 3y′ = 2e2x sin x

Determine the general solution of the second-order differential equation

    \[ y'' - 3y' = 2e^{2x} \sin x. \]


The homogeneous equation related to this is an equation of the form y'' + ay' + by = 0 with a = -3 and b = 0. This gives us d = a^2 - 4b = 9 and k = \frac{1}{2} \sqrt{d} = \frac{3}{2}. So, the general solution of the homogeneous equation y'' - 3y' = 0 is given by

    \begin{align*}  y &= e^{-\frac{ax}{2}} (c_1 e^{kx} + c_2 e^{-kx} ) \\  &= e^{\frac{3x}{2}} (c_1 e^{\frac{3}{2} x} + c_2 e^{-\frac{3}{2}x} ) \\  &= c_1 e^{3x} + c_2. \end{align*}

Then we know that v_1(x) = 1 and v_2(x) = e^{3x} are particular solutions of the homogeneous equation (taking c_1 = 0, \ c_2 = 1 and c_1 = 0, \ c_2 = 1, respectively). The Wronskian of v_1 and v_2 is given by

    \begin{align*}  W(x) &= v_1 v_2' - v_1' v_2 \\  &= 3e^{3x}. \end{align*}

Thus, a particular solution of the non-homogeneous equation is given by (from Theorem 8.9)

    \begin{align*}  y_1 &= t_1 v_1 + t_2 v_2 \\  t_1 &= -\int v_2 \frac{R}{W} \, dx \\  &= - \int e^{3x} \frac{ 2e^{2x} \sin x}{3e^{3x}} \, dx \\  &= - \frac{2}{3} \int e^{2x} \sin x \, dx \\  &= \frac{2}{15} e^{2x} (\cos x - 2 \sin x) \\  t_2 &= \int v_1 \frac{R}{W} \, dx \\  &= \int \frac{2e^{2x} \sin x}{3e^{3x}} \, dx \\  &= \frac{2}{3} \int e^{-x} \sin x \, dx \\  &= -\frac{1}{3} e^{-x} (\sin x + \cos x) \end{align*}

This implies

    \begin{align*}  y_1 &= \frac{2}{15} e^{2x} (\cos x - 2 \sin x) - \frac{1}{3} e^{2x} (\cos x + \sin x) \\  &= e^{2x} \left( \frac{2}{15} \cos x - \frac{4}{15} \sin x - \frac{1}{3} \cos x - \frac{1}{3} \sin x\right) \\  &= e^{2x} \left( -\frac{3}{15} \cos x - \frac{9}{15} \sin x \right) \\  &= -\frac{1}{5} e^{2x} (3 \sin x + \cos x). \end{align*}

Therefore, the general solution is

    \[ y =c_1 + c_2 e^{3x} - \frac{1}{5} e^{2x} (\cos x + 3 \sin x). \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):