Home » Blog » Find the resonance frequencies of a circuit governed by a given differential equation

Find the resonance frequencies of a circuit governed by a given differential equation

The current in an electric circuit obeys the differential equation

    \[ I''(t) + RI'(t) + I(t) = \sin (\omega t) \]

for positive real numbers R and \omega. The solutions to this equation can be expressed as

    \[ I(t) = F(t) + A \sin (\omega t + a), \]

where A>0 and a are constants which depend on R and \omega and

    \[ \lim_{t \to \infty} F(t) = 0. \]

If there exists a value of \omega which maximizes A then the value \frac{\omega}{2\pi} is called a resonant frequency of the circuit.

  1. Find all resonant frequencies when R = 1.
  2. Find all values of R such that the frequency has a resonant frequency.

  1. The homogeneous equation I'' + I' + I = 0 is of the form y'' + ay' + by = 0 where a = 1 and b = 1. This gives us d = a^2 - 4b = -3. Therefore, k = \frac{1}{2}\sqrt{-d} = \frac{\sqrt{3}}{2}. Hence, the general solution of the homogeneous equation is

        \[ I = e^{-\frac{t}{2}} \left( A \cos \frac{\sqrt{3}}{2} + B \sin \frac{\sqrt{3}}{2} \right). \]

    Now, to find a particular solution of I'' + I' + I = \sin (\omega t) we let

        \begin{align*}  && I(t) &= c_1 \cos (\omega t) + c_2 \sin (\omega t) \\   \implies && I'(t) &= \omega c_2 \cos (\omega t) - \omega c_1 \sin (\omega t) \\  \implies && I''(t) &= -\omega^2 c_2 \sin (\omega t) - \omega^2 c_1 \cos (\omega t). \end{align*}

    Plugging these into the differential equation we have

        \[ -\omega^2 c_2 \sin (\omega t) - \omega^2 c_1 \cos (\omega t) + \omega c_2 \cos (\omega t) - \omega c_1 \sin (\omega t) + c_1 \cos (\omega t) + c_2 \sin (\omega t) = \sin (\omega t).\]

    Evaluating at t = \frac{\pi}{2} and t = 0 we obtain the two equation

        \begin{align*}  -c_2 \omega^2 - c_1 \omega + c_2 &= 1, \\  -c_1 \omega^2 + c_2 \omega + c_1 &= 0. \end{align*}

    Solving for c_1 and c_2 we obtain

        \[ c_1 = \frac{-\omega}{\omega^2 + (\omega^2-1)^2}, \qquad c_2 = \frac{1-\omega^2}{\omega^2 + (\omega^2 -1)^2}. \]

    Thus, we have the particular solution

        \[ I_1 = \frac{1-\omega^2}{(\omega^2-1)^2 + \omega^2} \sin (\omega t) - \frac{\omega}{\omega^2 + (\omega^2-1)^2} \cos (\omega t). \]

    Therefore, the general solution is

        \begin{align*}  I(t) &= e^{-\frac{t}{2}} \left( A \cos \frac{\sqrt{3}}{2} t + B \sin \frac{\sqrt{3}}{2} t \right) - \frac{\omega}{\omega^2 + (\omega^2 -1)^2} \cos (\omega t) + \frac{1-\omega^2}{(\omega^2 -1)^2 + \omega^2} \sin (\omega t) \\  &= F(t) + C \left( -\omega \cos (\omega t) + (1-\omega^2) \sin (\omega t) \right). \end{align*}

    Where,

        \[ F(t) = e^{-\frac{t}{2}} \left( A \cos \frac{\sqrt{3}}{2} t + B \sin \frac{\sqrt{3}}{2} t \right). \]

    This implies

        \[ F(t) \to 0 \quad \text{as} \quad t \to + \infty. \]

    Furthermore, from a previous exercise (Section 2.8, Exercise #9) we know for C_0 = \sqrt{\omega^2 + (1-\omega)^2} we have

        \begin{align*}  I(t) &= F(t) - C_0 \cdot C (\sin (\omega t + \alpha)) \\  &= F(t) - A \sin (\omega t + \alpha) \end{align*}

    where

        \[ A = \frac{\sqrt{\omega^2+ (1-\omega^2)^2}}{\omega^2 + (1-\omega^2)^2} = \frac{1}{\sqrt{\omega^2 + (1-\omega^2)^2}}. \]

    So, to maximize A we minimize \sqrt{\omega^2 + (1-\omega^2)^2}. Setting the derivative equal to 0 we have

        \begin{align*}  && \frac{d}{d \omega} \left( \omega^2 + (1-\omega^2) \right) &= 0 \\  \implies && 2 \omega - 4 \omega (1-\omega^2) &= 0 \\  \implies && \omega = \frac{1}{\sqrt{2}}.  \end{align*}

    Hence, the resonance frequency is

        \[ \frac{\omega}{2 \pi} = \left( \frac{1}{\sqrt{2}} \right) \left( \frac{1}{2 \pi} \right). \]

  2. In order to have a resonance frequency, we must have a value of \omega such that A is maximized. Hence,

        \[ D \left( (R \omega)^2 + (1 - \omega^2)^2 \right) = 0 \quad \implies \quad R < \sqrt{2}. \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):