Home » Blog » Prove a formula for additional solutions of a Riccati equation given one solution

Prove a formula for additional solutions of a Riccati equation given one solution

Consider a differential equation

    \[ y' + P(x) y + Q(x) y^2 = R(x) \]

called a Riccati equation. Prove that if u is a solution of this equation then there are additional solutions

    \[ y = u + \frac{1}{v} \]

where v satisfies a first-order linear differential equation.


Proof. Let u be a function satisfying

    \[ u' + P(x) u + Q(x)u^2 = R(x). \]

Further, let y = u + \frac{1}{v} where v satisfies a first-order linear differential equation. Then,

    \[ y = u + \frac{1}{v} \quad \implies \quad y' = u' - \frac{v'}{v^2}. \]

Therefore,

    \begin{align*}  y' + P(x)y + Q(x) y^2 &= \left( u' - \frac{v'}{v^2} \right) + \left( u + \frac{1}{v} \right)P(x) + \left( u + \frac{1}{v} \right)^2 Q(x) \\[9pt]  &= u' - \frav{v'}{v^2} + P(x) u + P(x) \frac{1}{v} + Q(x) u^2 + 2Q(x) \frac{u}{v} + Q(x) \frac{1}{v^2} \\[9pt]  &= R(x) - \frac{v'}{v^2} + P(x)\frac{1}{v} + 2Q(x) \frac{u}{v} + Q(x) \frac{1}{v^2}. \end{align*}

Thus, if

    \[ -\frac{v'}{v^2} + P(x)v + 2Q(x) \frac{v}{u} + Q(x) \frac{1}{v^2} = 0, \]

then y = u+ \frac{1}{v} is a solution of our equation. But,

    \begin{align*}   &&-\frac{v'}{v^2} + P(x) \frac{1}{v} + 2Q(x) \frac{u}{v} + Q(x) \frac{1}{v^2} &= 0 \\[9pt]  \implies && -v' + P(x) v + 2Q(x) uv + Q(x) &= 0 \\[9pt]  \implies && v' - v  (P(x) + 2Q(x) u) &= Q(x). \end{align*}

This is a first-order linear differential equation (since u is a function of x). Hence, y = u + \frac{1}{v} is a solution of

    \[ y' + P(x) y + Q(x)y^2 = R(x) \]

where v is the solution of the first-order linear differential equation

    \[ v' - v (P(x) + 2Q(x) u) = Q(x). \qquad \blacksquare \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):