Home » Blog » Compute the limit of the given function

Compute the limit of the given function

Evaluate the limit.

    \[ \lim_{x \to 0^+} \left( \frac{\log x}{(1+x)^2} - \log \left( \frac{x}{1+x} \right) \right). \]


First, we simplify a bit

    \begin{align*}  \lim_{x \to 0^+} \left( \frac{\log x}{(1+x)^2} - \log \left( \frac{x}{1+x} \right) \right) &= \lim_{x \to 0^+} \left( \frac{\log x}{(1+x)^2} - \log x + \log(1+x) \right)  \\[9pt]  &= \lim_{x \to 0^+} \left( \frac{\log x - (1+x)^2 \log x}{(1+x)^2} \right) + \lim_{x \to 0^+} \left( \log (1+x) \right) \\[9pt]  &= \lim_{x \to 0^+} \left( \frac{(-2x-x^2) \log x}{(1+x)^2} \right) + 0 \\[9pt]  &= \lim_{x \to 0^+} \frac{ (-2-x)\log x^x }{(1+x)^2}. \end{align*}

But, by Example #3 (page 302 of Apostol), we know that \lim_{x \to 0^+} x^x = 1. Since the logarithm is continuous we then have

    \[ \lim_{x \to 0^+} \log x^x = \log 1 = 0. \]

Therefore,

    \[ \lim_{x \to 0^+} \frac{(-2-x) \log x^x}{(1+x)^2} = 0. \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):