Home » Blog » Compute the limit of the given function

Compute the limit of the given function

Evaluate the limit.

    \[ \lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x^{1000}}. \]


Letting t = \frac{1}{x^2} we have

    \[ \frac{e^{-\frac{1}{x^2}}}{x^{1000}} = \frac{t^{500}}{e^t}. \]

Since t \to +\infty as x \to 0 we then have

    \[ \lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x^{1000}} = \lim_{t \to +\infty} \frac{t^{500}}{e^t} = 0. \]

The final equality follows from Theorem 7.11 (page 301 of Apostol).

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):