Home » Blog » Compute the area of regions enclosed by a circular sector and tangent lines

Compute the area of regions enclosed by a circular sector and tangent lines

In the figure below let S(X) be the area of the shaded region and T(x) the area of the triangle ABC. Compute

  1. T(x);
  2. S(x);
  3. \displaystyle{ \lim_{x \to 0^+} \frac{T(x)}{S(x)}}.

  4. We have the following diagram, with some additional markings from the diagram in Apostol,

    Rendered by QuickLaTeX.com

    1. First, to calculate the area of the triangle ABC we calculate the area of the polygon OACB and subtract the area of the triangle OAB. Since the polygon OACB is two congruent triangles (since the line from O to C bisects the polygon into two equal sized triangles) we have

          \begin{align*}  \operatorname{Area}(OABC) &= 2 \cdot \operatorname{Area}(OAC)  \\  &= 2 \cdot \left( \frac{1}{2} \right) (1) \left( \tan \frac{x}{2} \right) \\  &= \tan \frac{x}{2}. \end{align*}

      To calculate the area of the triangle OAB we use the auxiliary point D. The line from B to D is the height of the triangle OAB and it has length \sin x. Therefore,

          \[ \operatorname{Area}(OAB) = \left( \frac{1}{2} \right) (1) (\sin x) = \frac{1}{2} \sin x. \]

      Hence,

          \[ \operatorname{Area}(ABC) = \tan \frac{x}{2} - \frac{1}{2} \sin x. \]

    2. The area of the shaded region S(x) is the area of circular sector minus the area of the triangle OAB (which we calculated in part (a) as \frac{1}{2} \sin x). The area of the sector is given by

          \[ \pi r^2 \cdot \frac{x}{2 \pi} = \frac{1}{2} x. \]

      Hence,

          \[ S(x) = \frac{1}{2}x - \frac{1}{2} \sin x. \]

    3. For this we take the limit using our expressions for T(x) and S(x) obtained in parts (a) and (b) and use L’Hopital’s,

          \begin{align*}  \lim_{x \to 0^+} \frac{T(x)}{S(x)} &= \lim_{x \to 0^+} \frac{ \tan \frac{x}{2} - \frac{1}{2} \sin x}{\frac{1}{2} x - \frac{1}{2} \sin x} \\[9pt]  &= \lim_{x \to 0^+} \frac{ \frac{1}{2} \sec^2 \frac{x}{2} - \frac{1}{2} \cos x}{\frac{1}{2} - \frac{1}{2} \cos x} \\[9pt]  &= \lim_{x \to 0^+} \frac{ \frac{1}{\cos^2 \frac{x}{2}}  - \cos x}{1 - \cos x}.  \end{align*}

      Then, we note that \cos^2 \frac{x}{2} = \frac{1}{2} (\cos x + 1) (from the trig identity \cos (2x) = \cos^2 x - 1). Therefore,

          \begin{align*}  \lim_{x \to 0^+} \frac{T(x)}{S(x)} &= \lim_{x \to 0^+} \frac{ \frac{1}{\cos^2 \frac{x}{2}}  - \cos x}{1 - \cos x} \\[9pt]  &= \lim_{x \to 0^+} \frac{ \frac{2}{\cos x + 1} - \cos x}{1 - \cos x} \\[9pt]  &= \lim_{x \to 0^+} \frac{2 - \cos^2 x - \cos x}{(1+\cos x)(1- \cos x)} \\[9pt]  &= \lim_{x \to 0^+} \frac{1 - \cos^2 x + 1 - \cos x}{(1+\cos x)(1- \cos x)} \\[9pt]  &= \lim_{x \to 0^+} \frac{(1- \cos x)(1+\cos x) + (1 - \cos x)}{(1+\cos x)(1 - \cos x)} \\[9pt]  &= \lim_{x \to 0^+} \frac{1 + \cos x + 1}{1 + \cos x} \\[9pt]  &= \lim_{x \to 0^+} \frac{2+ \cos x}{1+ \cos x} \\[9pt]  &= \frac{3}{2}. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):