Home » Blog » Find the limit of the given function

Find the limit of the given function

Find the value of the following limit.

    \[ \lim_{x \to 1^+} \frac{x^x - x}{1 - x + \log x}. \]


We apply L’Hopital’s rule (twice) to compute the limit (Noting that, (x^x - x)' = x^x + x^x \log x -1),

    \begin{align*}  \lim_{x \to 1^+} \frac{x^x - x}{1 - x + \log x} &= \lim_{x \to 1^+}\frac{x^x + x^x \log x - 1}{\frac{1}{x} -1} \\[9pt]  &= \lim_{x \to 1^+} \frac{x^{x+1} + x^{x+1} \log x - x}{1 - x} \\[9pt]  &= \lim_{x \to 1^+} \frac{x^{x+1} \left( \log x + \frac{x+1}{x} \right) + x^{x+1} \left( \log x + \frac{x+1}{x} \right) + x^x - 1}{-1} \\[9pt]  &= -2. \end{align*}

Since this limit exists, the application of L’Hopital’s rule was justified.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):