Home » Blog » Find the limit of the given function

Find the limit of the given function

Find the value of the following limit.

    \[ \lim_{x \to 0} \frac{\log(\cos (ax))}{\log (\cos (bx))}. \]


Applying L’Hopital’s rule we have,

    \begin{align*}  \lim_{x \to 0} \frac{\log(\cos (ax))}{\log(\cos (bx))} &= \lim_{x \to 0} \left( \frac{a}{b} \cdot \frac{\cos (bx)}{\cos (ax)} \cdot \frac{\sin (ax)}{\sin (bx)} \right) \\[9pt]  &= \frac{a}{b} \lim_{x \to 0} \frac{a \cos (ax)}{b \cos (bx)} \\[9pt]  &= \left(\frac{a}{b} \right)^2. \end{align*}

(We used that \lim_{x \to 0} \frac{\sin (ax)}{\sin (bx)} = \frac{a}{b} from this exercise, Section 7.11, Exercise #1). Since this limit exists, the application of L’Hopital’s rule was justified.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):