Home » Blog » Find the limit of the given function

Find the limit of the given function

Find the value of the following limit.

    \[ \lim_{x \to 0} \frac{(2-x)e^x - x - 2}{x^3}. \]


We apply L’Hopital’s rule three times,

    \begin{align*}  \lim_{x \to 0} \frac{(2-x)e^x - x - 2}{x^3} &= \lim_{x \to 0} \frac{(2-x)e^x - e^x - 1}{3x^2} \\[9pt]  &= \lim_{x \to 0} \frac{(2-x)e^x - 2e^x}{6x} \\[9pt]  &= \lim_{x \to 0} \frac{(2-x)e^3 - 3e^x}{6} \\[9pt]  &= -\frac{1}{6}. \end{align*}

Since this final limit exists, the chain of applications of L’Hopital’s was justified.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):