Home » Blog » Find the limit of the given function

Find the limit of the given function

Find the value of the following limit.

    \[ \lim_{x \to 0} \frac{ x \cot x - 1}{x^2}. \]


First, we write \cot x = \frac{\cos x}{\sin x} and then multiply inside the derivative by \frac{\sin x}{x} (which is alright since \lim_{x \to 0} \frac{\sin x}{x} = 1). Therefore we have,

    \begin{align*}  \lim_{x \to 0} \frac{ x \cot x - 1}{x^2} &= \lim_{x \to 0} \left( \frac{ \frac{x \cos x}{\sin x} - 1}{x^2} \cdot \frac{\sin x}{x} \right) \\[9pt]  &= \lim_{x \to 0} \frac{x \cos x - \sin x}{x^3} \\[9pt]  &= \lim_{x \to 0} \frac{ -x \sin x}{3x^2} &(\text{L'Hopital})\\[9pt]  &= \lim_{x \to 0} \frac{- \cos x}{3} &(\text{L'Hopital}) \\[9pt]  &= -\frac{1}{3}. \end{align*}

Since this limit exists, the application of L’Hopital’s rule was justified.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):