Home » Blog » Find the limit as x to 0 of the given expression

Find the limit as x to 0 of the given expression

Evaluate the limit.

    \[ \lim_{x \to 0} \left( \frac{(1+x)^{\frac{1}{x}}}{e} \right)^{\frac{1}{x}}. \]


First, we write the expression using the definition of the exponential,

    \begin{align*}  \left( \frac{(1+x)^{\frac{1}{x}}}{e} \right)^{\frac{1}{x}} &= e^{ \frac{1}{x} \log \left( \frac{(1+x)^{\frac{1}{x}}}{e} \right)} \\[10pt]  &= e^{\frac{1}{x} \left( \log (1+x)^{\frac{1}{x}} - \log e \right)} \\[10pt]  &= e^{\frac{1}{x} \left( \frac{1}{x} \log(1+x) - 1 \right)} \\[10pt]  &= e^{\frac{1}{x^2} \log(1+x) - \frac{1}{x}}. \end{align*}

Now, considering the expression in the exponent and using the expansion of \log(1+x) as x \to 0 (page 287 of Apostol) we have as x \to 0,

    \begin{align*}  \frac{1}{x^2} \log(1+x) - \frac{1}{x} &= \frac{1}{x^2} \left( x - \frac{x^2}{2} + o(x^2) \right) - \frac{1}{x} \\[9pt]  &= \frac{1}{x} - \frac{1}{2} + \frac{o(x^2)}{x^2} - \frac{1}{x} \\[9pt]  &= -\frac{1}{2} + \frac{o(x^2)}{x^2}. \end{align*}

Therefore, we have

    \begin{align*}  \lim_{x \to 0} \left( \frac{(1+x)^{\frac{1}{x}}}{e} \right)^{\frac{1}{x}} &= \lim_{x \to 0} e^{\frac{1}{x^2} \log(1+x) - \frac{1}{x}} \\[9pt]  &= \lim_{x \to 0} e^{-\frac{1}{2} + \frac{o(x^2)}{x^2}} \\[9pt]  &= e^{-\frac{1}{2}}. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):