Home » Blog » Prove some limits of cos x

Prove some limits of cos x

Using the expansion

    \[ \cos x = 1 - \frac{1}{2}x^2 + o(x^3) \qquad \text{as} \qquad x \to 0, \]

prove that

    \[ \frac{1-\cos x}{x^2} \to \frac{1}{2} \qquad \text{as} \qquad x \to 0. \]

Using a similar method, find

    \[ \lim_{x \to 0} \frac{1-\cos (2x) - 2x^2}{x^4}.  \]


Proof. Since

    \[ \cos x = 1 - \frac{1}{2}x^2 + o(x^3) \]

we have

    \begin{align*}  &&1 - \cos x &= \frac{1}{2} x^2 + o(x^3) \\[9pt]  \implies && \frac{1 - \cos x}{x^2} &= \frac{1}{2} + o(x) &(\text{Theorem 7.8(c)}) \\[9pt]  \implies && \frac{1 - \cos x}{x^2} &\to \frac{1}{2} \quad \text{as} \quad x \to 0.  \end{align*}

(We use Theorem 7.8(c) since in the second line to bring the \frac{1}{x^2} inside the little o(x^3).)

For the second limit, we use the Taylor expansion for \cos x and replace x with 2x to obtain,

    \begin{align*}  &&\cos (2x) &= 1 - 2x^2 + \frac{2}{3}x^4 + o(x^5) \\[9pt]  \implies && 1 - \cos (2x) - 2x^2 &= 1 - 1 + 2x^2 - \frac{2}{3}x^4 + 2x^2 + o(x^5) \\[9pt]  \implies && 1 - \cos (2x) - 2x^2 &= -\frac{2}{3}x^4 + o(x^5) \\[9pt]  \implies && \frac{1 - \cos (2x) - 2x^2}{x^4} &\to -\frac{2}{3} \quad \text{as} \quad x \to 0. \qquad \blacksquare \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):