Home » Blog » Find the limit as x goes to 1 of log x / (x2 + x – 2)

Find the limit as x goes to 1 of log x / (x2 + x – 2)

Evaluate the limit.

    \[ \lim_{x \to 1} \frac{\log x}{x^2 + x -2}. \]


From this exercise (Section 7.11, Exercise #4) we know

    \[ \log x = (x-1) - \frac{1}{2}(x-1)^2 + o((x-1)^2). \]

Therefore,

    \begin{align*}  \lim_{x \to 1} \frac{\log x}{x^2+x-2} &= \lim_{x \to 1} \frac{(x-1) - \frac{1}{2}(x-1)^2 + o((x-1)^2)}{x^2+x-2} \\[9pt]  &= \lim_{x \to 1} \left( \frac{1}{x+2} + \frac{(x-1)}{2(x+2)} + \frac{o(x-1)^2}{x-1}\cdot \frac{1}{x+2} \right) \\[9pt]  &= \frac{1}{3} + 0 + 0 \cdot \frac{1}{3} \\[9pt]  &= \frac{1}{3}. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):