Home » Blog » Prove the formulas for derivatives of products and quotients

Prove the formulas for derivatives of products and quotients

Derive the formulas for the derivative of a product and the derivative of a quotient from the corresponding formulas for the derivative of a sum and the derivative of a difference.


We know the derivative rules for sums and differences are:

    \[ \left( f(x) + g(x) \right)' = f'(x) + g'(x) \quad \text{and} \quad \left( f(x) - g(x) \right)' = f'(x) - g'(x). \]

To derive the derivative rule for products using logarithmic differentiation we let h(x) = f(x)g(x) and compute

    \begin{align*}  h(x) = f(x)g(x) && \implies && \log |h(x)| &= \log |f(x)g(x)| \\[9pt]  && \implies && (\log |h(x)|)' &= (\log |f(x)g(x)|)' \\[9pt]  && \implies && \frac{h'(x)}{h(x)} &= (\log |f(x)| + \log |g(x)|)' \\[9pt]  && \implies && \frac{h'(x)}{h(x)} &= \frac{f'(x)}{f(x)} + \frac{g'(x)}{g(x)} \\[9pt]  && \implies && h'(x) &= \left( \frac{f'(x)}{f(x)} + \frac{g'(x)}{g(x)} \right) h(x) \\[9pt]  && \implies && h'(x) &= \left( \frac{f'(x)}{f(x)} + \frac{g'(x)}{g(x)} \right) f(x)g(x) \\[9pt]  && \implies && (f(x)g(x))' &= f'(x) g(x) + f(x)g'(x). \end{align*}

This is the usual rule for derivative of a product.

Similarly, for the derivative of a quotient, let h(x) = \frac{f(x)}{g(x)} and then compute,

    \begin{align*}  h(x) = \frac{f(x)}{g(x)} && \implies && \log | h(x)| &= \log \left| \frac{f(x)}{g(x)} \right| \\[9pt]  && \implies && (\log|h(x)|)' &= \left( \log \left| \frac{f(x)}{g(x)} \right| \right)' \\[9pt]  && \implies && \frac{h'(x)}{h(x)} &= \left( \log |f(x)| - \log |g(x)| \right) ' \\[9pt]  && \implies && \frac{h'(x)}{h(x)} &= \frac{f'(x)}{f(x)} - \frac{g'(x)}{g(x)} \\[9pt]  && \implies && h'(x) &= \left( \frac{f'(x)}{f(x)} - \frac{g'(x)}{g(x)} \right) h(x) \\[9pt]  && \implies && h'(x) &= \left( \frac{f'(x)}{f(x)} - \frac{g'(x)}{g(x)} \right) \frac{f(x)}{g(x)} \\[9pt]  && \implies && \left( \frac{f(x)}{g(x)} \right)' &= \frac{f'(x)g(x) - g'(x)f(x)}{f(x)g(x)} \cdot \frac{f(x)}{g(x)} \\[9pt]  && \implies && \left( \frac{f(x)}{g(x)} \right)' &= \frac{f'(x)g(x) - g'(x)f(x)}{(g(x))^2}. \end{align*}

Which is the usual rule for derivative of a quotient.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):